

Kinetic Metallization Equipment

Howard Gabel

Aeromat2011

Kinetic Metallization is not Coldspray

INDVATI

Comparison

He, 250C, Cu allo	у	Kinetic Metallization 100psia	Coldspray (e.g., CGT) 300psia		
Gas Consumption	SCFM	11	135		
Powder Feedrate	g/m	30	34		
Deposition Efficiency	%	90	90		
Deposition Rate	g/m	27	30		

I

Comparison

- Coldspray nozzle diameter is twice that of Kinetic Metallization X4
- Coldspray pressure is three times that of Kinetic Metallization X3
 - Coldspray gas flow is 12 times that of Kinetic Metallization X12
- Coldspray powder loading is 1/20th that of Kinetic Metallization X0.05
- Net result is coldspray consumes TWELVE times as much gas per gram of powder deposited

Some questions to ponder Why are coldspray systems so big?

- Why are coldspray systems so heavy?
- Why do coldspray systems get bigger and heavier every year?
- Don't most technologies get smaller as they are refined?

I I I

KM System Components

- Deposition Gun
- Control Cabinet
- Powder fluidizing Unit
- Manipulation equipment
- Gas Control Panel

KM Deposition Gun

- Low mass TCU
 - Quick heat-up
 - Low thermal inertia
 - Minimum temperature overshoot/undershoot

- Mixing Chamber
 - Thermal/mass equilibrium
- Friction compensated sonic nozzle

INOVATI

KM Deposition Guns Common Technology Interchangeable Parts

I I I

Powder Fluidizing Unit

- Large Capacity 4 hour run time
- Patented Brush-Sieve Design
- Light-weight pressure vessel
- Feed Rate independent of gas flow rate
- Real-time feed rate adjustment
 - Gas flow independent
- Powder Size: 500nm 50µm
- Feed Rate: 1-100g/min

Gun Automation

- 6-axis or 4-axis Robot
- Coordinated rotation axis

TOVATI

Production Coating System

- Dual powder fluidizing units
 - Continuous operation
 - Dual-layer coatings
- Closed loop pressure control
- Gas mass flow metering
- Gas blending enabled
- Human machine interface
- Real-time system control

I I I

New Developments

- Onboard gas blending
- Advance HMI
 - Supervisor Mode
 - Receipt definition
 - Operator Mode
 - Receipt use

- Pre-formatted reporting
 - System identification
 - Trend plot
 - Parameter statistics

Gas Panel

- Mixed or Single gas
 - Onboard mass flow control
 - CDS and PCS
 - Minimum flow variations
 - Constant flow split
 - PFU
 - TCU

INDVATI

Startup Mode

KINETIC METALLIZATION

PRODUCTION COATING SYSTEM

Operator	Super	visor	Report Generator	
System Seria				
Control Softwa	re Version:	KM-PCS 3.4		
Display Softwa	re Version:	KM-PCS 3.4		
Total Syste	m Uptime:	1d 9	Exit	

Supervisor Mode

KINETIC METALLIZATION

PRODUCTION COATING SYSTEM

Substrate		S	upe	rviso	r			Description					
jhenness								dim repair					
Powder 1	Base						AI		Alloy/Mix				
Powder 2	Mg	AI	Si	Sc	Ті	v	Cr	Mn					
Gas	Fe	Co	Ni	Cu	Zn	Zr	Nb	Mo	cast housing				
	Rh	Pd	Ag	In	Sn	Hf	Та	w	casi nousing				
Monitor	nitor Ir	Pt	Au	Re	Poly	mer	Cera	amic		Exit			

Powder Parameter

KINETIC METALLIZATION

PRODUCTION COATING SYSTEM

Substrate		Supervisor Setpo						Se	tpoint	Sieve	Manual	
	jhenness						0			80	Preview	
Rowden I	Base						C	ЛC	All	loy/Mix	1 min	
Powder 2	Mg	AI	Si	Sc	Ti	v	Cr	Mn			Preview	
Gas	Fe	Co	Ni	Cu	Zn	Zr	Nb	Mo	۵	1203 media	0 sec	
	Rh	Pd	Ag	In	Sn	Hf	Та	w				
Monitor	Ir	Pt	Au	Re	Poly	mer	Cera	amic		Exit		

I I I

Gas Parameter / Recipe Save

IDOVATI

KINETIC METALLIZATION

PRODUCTION COATING SYSTEM

Substrate	Supervisor	Temp	perature		Pressure	
Substrate	jhenness		300 F		90 psig	
Powder 1	TCU/PFU	He / N2		Sett		
Powder 2	Ho/Ho		Description	dim repa	ir	
Towaci 2	Tie/Tie		Substrate	AI	cast housing	
	Na/Na		Powder 1	CMC	Al2O3 media	
Gas	112/112		Powder 2	Al	Al-Trans	
Cras	He/N ₂			Setpoint	Sieve	
Monitor	A:-/A1		PFU 1	0	80	
	Air/N ₂		PFU 2	70	150	
	Recipe: 1	Save				Exit

I I I

Run Mode

KINETIC METALLIZATION

PRODUCTION COATING SYSTEM

I I I

Trend Plot

KINETIC METALLIZATION

PRODUCTION COATING SYSTEM

Mobile Coating System

INOVATI

- Integrated cabinet on portable cart
 - Brush-sieve PFU for ultra-fine powder feeding
 - Temperature range to 350C
 - Pressure range 50-130 psig
 - Gas Blending He, GN2, Air
 - Dual PFU
 - Powder blending or grit blasting
 - Quiet 75 dBa

KM-MCS

- Handheld KM Gun
 - Round or oval WC sonic nozzles (noise < 75 dba)
 - Standard light-weight KM TCU & Gun (< 5 lbs)
 - Powder injection at converging inlet
 - Powder preheating with nozzle mixing chamber

I I I

KM Coatings

- Ag
- Al/Zn
- Al-4047 -Al/Si
- AI-6061
- AI-CP
- Al-Trans -Al2O3
- Al-Trans- Co
- Al-Trans- Cr

- Al-Trans-Mo
- Al-Trans-Ni
- Al-Trans-SiC
- Al-Trans-SS
- Al-Trans-Ti
- Al-Trans-TiC
- Al-Trans-V
- Amorphous

- Fe
- I Ni
- Au braze alloy
- **C103**
- Co
- CoCr
- CoNiCrAlY/CBN

I I I

KM Coatings

- Cr
- CrC/NiCr
- Cu
- Cu/SiC
- CuAlFe
- CuCr
- CuCrAl
- ln In

- Ln718
- - Nb
 - Ni Ni
 - Ni/CBN

Мо

- Ni-braze
- NiCrAlY
- Nitinol

Re

Reactive
Intermetallic
Compounds

I I I

KM Coatings

- Sn Sn
- SnAg
- SnAgSb
- SS
- Ti/HA
- Ti/TiC
- Ti/TiN
- Ti6-4

- Ti-CP
- WC-Co
- Teflon, PTFE
- Ultem, PEI
- PEEK
- Nylon polyamides

- Polymer+
 - Al2O3
 - BaTiO3
 - Fused Silica
 - Quartz